2024 年 61 巻 2 号 p. 82-90
In the vacuum system of pneumatic conveying, the authors have proposed that a suction nozzle equipped with an injection pipe at the center would provide a highly dense, highly efficient method of transporting powder and particles. In this paper, we examined the effects of suction velocity and particle diameter on the loading ratio and the suction nozzle efficiency by attaching the injection port on the outer part of the suction nozzle. As a result, in the case of coarse particles within this experimental condition, the effect of suction velocity differs in both cases (the injection ports positioned at the center and outer part). This characteristic is explainable by the difference between fluidization phenomenon and aeration phenomenon. Under conditions that are not affected by the suction velocity, neither is affected by the particle diameter in both cases.