Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and its Applications
Online ISSN : 2188-4749
Print ISSN : 2188-4730
第52回ISCIE「確率システム理論と応用」国際シンポジウム(2020年10月, 大阪)
Ensemble Kalman Filter using Gaussian-Sum Predicted State Probability Density Functions
Masaya MurataIsao KawanoKoichi Inoue
著者情報
ジャーナル フリー

2021 年 2021 巻 p. 21-27

詳細
抄録

We propose to use Gaussian-sum predicted state probability density functions (PDFs) in the algorithm of the ensemble Kalman lter (EnKF) to enhance its l tering accuracy. We analyze the EnKF in terms of the moment-matched linearization for the nonlinear observation model and show that the ltering accuracy of the EnKF can be improved by using the Gaussian-sum predicted state PDFs. We numerically con rm the effectiveness of the new lters through simulations using benchmark ltering problems of the vector nonlinear growth model and the satellite reentry.

著者関連情報
© 2021 ISCIE Symposium on Stochastic Systems Theory and Its Applications
前の記事 次の記事
feedback
Top