TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN
Online ISSN : 1884-0485
ISSN-L : 1884-0485

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Visualization Methods for Spacecraft Telemetry Data Using Change-point Detection and Clustering
Ryo SAKAGAMINaoya TAKEISHITakehisa YAIRIKoichi HORI
著者情報
ジャーナル 認証あり 早期公開

論文ID: 17.244

この記事には本公開記事があります。
詳細
抄録

For secure operation of spacecraft, automatic or assistive health monitoring systems utilizing telemetry data are important. However, it is difficult to utilize them comprehensively because they consist of myriad heterogeneous variables. Although various monitoring systems focusing on only a few variables or homogeneous variables have been suggested, a definitive method to deal with the relationship among multiple heterogeneous variables has not yet. This paper proposes a new visualization framework that aims to show the correlation rules underlying multiple variables of spacecraft telemetry data. The proposed framework consists of a change-point detection algorithm based on subspace identification, clustering methods using dimensionality reduction, and a visualization method using heatmaps. In experiments conducted with real telemetry data obtained from JAXA spacecraft SDS-4, the proposed framework demonstrated effective visualizations that reflected the correlations among variables expected from mechanical characteristics of the satellite. Despite differences in scales and/or units, this framework succeeded in visualizing dynamic correlations not only among continuous variables but also among continuous and discrete variables. This framework can be utilized as an initial stage of anomaly detection focusing on the relationship among multiple variables, as well as a method to perceive the overall state of the spacecraft at a glance.

著者関連情報
© 2019 The Japan Society for Aeronautical and Space Sciences
feedback
Top