鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
論文
鉄鋼材料における定量的三次元組織解析手法:電子線トモグラフィーの強磁性材料への適用に向けて
波多 聰佐藤 和久村山 光宏土山 聡宏中島 英治
著者情報
ジャーナル オープンアクセス HTML

2014 年 100 巻 7 号 p. 889-896

詳細
抄録
The majority of engineering steels are ferromagnetic and structually inhomogeneous on special scales ranging from nanometers to micrometers, and physical properties of engineering steels arise from three-dimensional (3D) features of the microstructure. Thus, obtaining 3D representation with a large field of view is desired for transmission electron microscopy (TEM) based microstructure characterization to establish microstructure - physical properties relationships with reasonable statistical relevancy. Here, we venture to use a conventional sample preparation process,i.e., mechanical polishing followed by electro-polishing, and experimental protocols optimization for electron tomography (ET) for ferromagnetic materials, especially engineering steels’ microstructural characterization are carried out. We found that the sample thickness after the mechanical polishing step is a critical experimental parameter affecting the success rate of tilt-series image acquisition. For example, for a ferritic heat-resistant 9Cr steel with lath martensite structure, mechanically thinning down to 30 μm or thinner was necessary to acquire an adequate tilt-series image of carbide precipitates in the high-angle annular dark-field scanning TEM (HAADF-STEM) mode. On the other hand, tilt-series image acquisition from dislocation structures remains challenging because the electron beam deflection during specimen-tilt was unavoidable and significant in the HAADF-STEM mode. To overcome the electron beam deflection problem, we evaluate several relatively accessible approaches including the “Low-Mag and Lorentz” TEM/STEM modes; although they are rarely used for ET, both the modes reduce or even zero the objective lens current and likely weaken the magnetic interference between the ferromagnetic specimen and the objective lens magnetic field. The advantages and disadvantages of those experimental components are discussed.
著者関連情報
© 2014 一般社団法人 日本鉄鋼協会

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top