鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
相変態・材料組織
3%Si-Fe粗大結晶の圧延集合組織に及ぼす初期方位と鋼中炭素の影響
新垣 之啓 髙島 稔早川 康之
著者情報
ジャーナル オープンアクセス HTML

2021 年 107 巻 5 号 p. 367-374

詳細
抄録

Influence of the initial crystal orientation and carbon content on rolling texture was investigated using quasi-single crystals in 3.2 mass% Si steel. These specimens had {110}<001> and {110}<113> crystal orientation which were known for the near surface texture of the hot-rolled band.

In the case of the ultra low-carbon specimens, initial {110}<001> rotated to {111}<112> after 66% reduction cold rolling and initial {110}<113> rotated to near {211}<124>. It was thought that the crystal rotation from {110}<113> to near {211}<124> caused by an activation of {110} slip system which had the second largest schmid factor. {211}<124> was not known for the stable rolling texture, however {211}<124> intensity in present experiment was extremely strong. In addition, {211}<124> has geometric character that if it rotates by an activation of one slip system, it will revert to the initial crystal orientation {211}<124> by an activation of another slip system.

In the case of the specimens containing carbon, {110}<001> rotated to {111}<112> and {100}<011> caused by deformation twinning. On the other hand, {110}<113> rotated to {211}<113>-{111}<112> during the cold rolling. The deformation twinning was also observed. It was thought that the crystal orientation in the deformation twinning rotated to near {111}<112> by an activation of {110} slip system.

Fullsize Image
著者関連情報
© 2021 一般社団法人 日本鉄鋼協会

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top