The Tohoku Journal of Experimental Medicine
Online ISSN : 1349-3329
Print ISSN : 0040-8727
ISSN-L : 0040-8727
Regular Contribution
Alleviation of Spinal Cord Injury by MicroRNA 137-Overexpressing Bone Marrow Mesenchymal Stem Cell-Derived Exosomes
Yang ShaoQiubo WangLei LiuJianwei WangMao Wu
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2023 Volume 259 Issue 3 Pages 237-246

Details
Abstract

Bone marrow mesenchymal stem cell (BMMSC) is reported to promote spinal cord injury (SCI) recovery via secreting exosomes to deliver RNAs, proteins, lipids, etc. The present study aimed to investigate the effect of microRNA 137 (miR-137)-overexpressing BMMSC exosomes on SCI rats. BMMSCs were extracted from Sprague–Dawley (SD) rat hind leg bone marrow, and then BMMSC-secreted exosomes were collected. MiR-137 mimic and negative control (NC) mimic were transfected into BMMSCs, and then the corresponding exosomes were collected. Subsequently, SD rats were treated with sham operation + phosphate-buffered saline (PBS), SCI operation + PBS, SCI operation + NC mimic BMMSC exosomes, or SCI operation + miR-137-overexpressing BMMSC exosomes. MiR-137 was downregulated in the spinal cord tissue of SCI rats compared to sham rats. Furthermore, BMMSC exosome injection elevated the Basso, Beattie, and Bresnahan (BBB) scores and neuronal viability and reduced tissue injury and proinflammatory cytokine expression in the spinal cord tissue of SCI rats compared to PBS treatment. Subsequently, miR-137-overexpressing BMMSC exosome injection improved the BBB score and neuron viability, and decreased tissue injury as well as proinflammatory cytokine expression in SCI rats compared to NC-overexpressing BMMSC exosomes. Additionally, miR-137-overexpressing BMMSC exosomes also diminished neuronal apoptosis in the spinal cord tissue of SCI rats compared to NC-overexpressing BMMSC exosomes. In conclusion, miR-137-overexpressing BMMSC exosomes reduce tissue injury and inflammation while improving locomotor capacity and neuronal viability in SCI rats. These findings suggest that miR-137-overexpressing BMMSC exosomes may serve as a treatment option for SCI recovery.

Content from these authors
© 2023 Tohoku University Medical Press

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC-BY-NC-ND 4.0). Anyone may download, reuse, copy, reprint, or distribute the article without modifications or adaptations for non-profit purposes if they cite the original authors and source properly.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top