The Tohoku Journal of Experimental Medicine
Online ISSN : 1349-3329
Print ISSN : 0040-8727
ISSN-L : 0040-8727
Regular Contribution
SKI-349, a Sphingosine Kinases 1/2 Inhibitor, Suppresses Cell Viability, Invasion, and AKT/mTOR Signaling Pathway, and Shows Synergistic Cytotoxic Effects with Sorafenib in Hepatocellular Carcinoma
Liqiao ChenLiangliang WangZongqi HanPeng QinGuangxu NiuJingxia Du
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2024 Volume 262 Issue 3 Pages 173-180

Details
Abstract

SKI-349 is a novel sphingosine kinases (SPHK) inhibitor with anti-tumor effects. This study aimed to assess the effect of SKI-349 on cell biological behaviors, downstream pathways, and its synergistic effect with sorafenib in hepatocellular carcinoma (HCC). HCC cell lines (Huh7 and Hep3B) were treated with SKI-349 at concentrations of 1, 2, 4, or 8 μM. Then, SPHK1/2 activity, cell viability, proliferation, apoptosis, invasion, and protein expressions of phosphorylated-protein kinase B (p-AKT), AKT, phosphorylated-mammalian target of rapamycin (p-mTOR) and mTOR were detected. Combination index values of SKI-349 (0, 1, 2, 4, or 8 μM) and sorafenib (0, 2.5, 5, 10, or 20 μM) were calculated. SKI-349 decreased the relative SPHK1 and SPHK2 activity compared with blank control in a dose-dependent manner in the Huh7 and Hep3B cell lines. Meanwhile, SKI-349 reduced cell viability, 5-ethynyl-2′-deoxyuridine (EdU) positive cells, and invasive cells, while it increased apoptotic cells compared to blank control in a dose-dependent manner in Huh7 and Hep3B cell lines. Based on the western blot assay, SKI-349 decreased the ratio of p-AKT to AKT and that of p-mTOR to mTOR compared with blank control in a dose-dependent manner in the Huh7 and Hep3B cell lines. Additionally, SKI-349 combined with sorafenib declined cell viability with concentration gradient effects compared to SKI-349 sole treatment, and they had synergistic cytotoxic effects in Huh7 and Hep3B cell lines. SKI-349 suppresses SPHK1 and SPHK2 activity, cell viability, invasion, and AKT/mTOR signaling pathway, as well as exhibits a synergistic cytotoxic effect with sorafenib in HCC.

Fullsize Image
Content from these authors
© 2024 Tohoku University Medical Press

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC-BY-NC-ND 4.0). Anyone may download, reuse, copy, reprint, or distribute the article without modifications or adaptations for non-profit purposes if they cite the original authors and source properly.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top