人工知能学会論文誌
Online ISSN : 1346-8030
Print ISSN : 1346-0714
ISSN-L : 1346-0714
原著論文
未知エンティティを伴う知識ベース補完: グラフニューラルネットワークを用いたアプローチ
濱口 拓男大岩 秀和新保 仁松本 裕治
著者情報
ジャーナル フリー

2018 年 33 巻 2 号 p. F-H72_1-10

詳細
抄録

Knowledge base completion (KBC) aims to predict missing information in a knowledge base. In this paper, we address the out-of-knowledge-base (OOKB) entity problem in KBC: how to answer queries concerning test entities not observed at training time. Existing embedding-based KBC models assume that all test entities are available at training time, making it unclear how to obtain embeddings for new entities without costly retraining. To solve the OOKB entity problem without retraining, we use graph neural networks (GNNs) to compute the embeddings of OOKB entities, exploiting the limited auxiliary knowledge provided at test time. The experimental results show the effectiveness of our proposed model in the OOKB setting. Additionally, in the standard KBC setting in which OOKB entities are not involved, our model achieves state-of-the-art performance on the WordNet dataset.

著者関連情報
© 人工知能学会 2018
前の記事
feedback
Top