Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
ON STABLE COMPLETE HYPERSURFACES WITH VANISHING $r$-MEAN CURVATURE
MANFREDO DO CARMOMARIA F. ELBERT
著者情報
ジャーナル フリー

2004 年 56 巻 2 号 p. 155-162

詳細
抄録
A form of Bernstein theorem states that a complete stable minimal surface in euclidean space is a plane. A generalization of this statement is that there exists no complete stable hypersurface of an $n$-euclidean space with vanishing $(n-1)$-mean curvature and nowhere zero Gauss-Kronecker curvature. We show that this is the case, provided the immersion is proper and the total curvature is finite.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2004 by THE TOHOKU UNIVERSITY
前の記事 次の記事
feedback
Top