Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
SQUARE MEANS VERSUS DIRICHLET INTEGRALS FOR HARMONIC FUNCTIONS ON RIEMANN SURFACES
HIROAKI MASAOKAMITSURU NAKAI
著者情報
ジャーナル フリー

2012 年 64 巻 2 号 p. 233-259

詳細
抄録
We show rather unexpectedly and surprisingly the existence of a hyperbolic Riemann surface $W$ enjoying the following two properties: firstly, the converse of the celebrated Parreau inclusion relation that the harmonic Hardy space $HM_2(W)$ with exponent 2 consisting of square mean bounded harmonic functions on $W$ includes the space $HD(W)$ of Dirichlet finite harmonic functions on $W$, and a fortiori $HM_2(W)=HD(W)$, is valid; secondly, the linear dimension of $HM_2(W)$, hence also that of $HD(W)$, is infinite.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2012 by THE TOHOKU UNIVERSITY
前の記事 次の記事
feedback
Top