Journal of Toxicologic Pathology
Online ISSN : 1881-915X
Print ISSN : 0914-9198
ISSN-L : 0914-9198

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Difference in morphology and interactome profiles between orthotopic and subcutaneous gastric cancer xenograft models
Kiyotaka NAKANOTakashi NISHIZAWADaisuke KOMURAEtsuko FUJIIMakoto MONNAIAtsuhiko KATOShin-ichi FUNAHASHIShumpei ISHIKAWAMasami SUZUKI
著者情報
ジャーナル フリー 早期公開

論文ID: 2018-0020

この記事には本公開記事があります。
詳細
抄録

In xenograft models, orthotopic (ORT) engraftment is thought to provide a different tumor microenvironment compared with subcutaneous (SC) engraftment. We attempted to characterize the biological difference between OE19 (adenocarcinoma of the gastroesophageal junction) SC and ORT models by pathological analysis and CASTIN (CAncer-STromal INteractome) analysis, which is a novel method developed to analyze the tumor-stroma interactome framework. In SC models, SCID mice were inoculated subcutaneously with OE19 cells, and tumor tissues were sampled at 3 weeks. In ORT models, SCID mice were inoculated under the serosal membrane of the stomach wall, and tumor tissues were sampled at 3 and 6 weeks after engraftment. Results from the two models were then compared. Histopathologically, the SC tumors were well circumscribed from the adjacent tissue, with scant stroma and the formation of large ductal structures. In contrast, the ORT tumors were less circumscribed, with small ductal structures invading into abundant stroma. Then we compared the transcriptome profiles of human tumor cells with the mouse stromal cells of each model by species-specific RNA sequencing. With CASTIN analysis, we successfully identified several interactions that are known to affect the tumor microenvironment as being selectively enhanced in the ORT model. In conclusion, pathological analysis and CASTIN analysis revealed that ORT models of OE19 cells have a more invasive character and enhanced interaction with stromal cells compared with SC models.

著者関連情報
© 2018 The Japanese Society of Toxicologic Pathology
feedback
Top