IEICE Transactions on Communications
Online ISSN : 1745-1345
Print ISSN : 0916-8516
Special Section on Technology Trials and Proof-of-Concept Activities for 5G and Beyond
Learning-Based, Distributed Spectrum Observation System for Dynamic Spectrum Sharing in the 5G Era and Beyond
Masaki KITSUNEZUKAKenta TSUKAMOTOJun SAKAITaichi OHTSUJIKazuaki KUNIHIRO
Author information
JOURNAL RESTRICTED ACCESS

2019 Volume E102.B Issue 8 Pages 1526-1537

Details
Abstract

Dynamic sharing of limited radio spectrum resources is expected to satisfy the increasing demand for spectrum resources in the upcoming 5th generation mobile communication system (5G) era and beyond. Distributed real-time spectrum sensing is a key enabler of dynamic spectrum sharing, but the costs incurred in observed-data transmission are a critical problem, especially when massive numbers of spectrum sensors are deployed. To cope with this issue, the proposed spectrum sensors learn the ambient radio environment in real-time and create a time-spectral model whose parameters are shared with servers operating in the edge-computing layer. This process makes it possible to significantly reduce the communication cost of the sensors because frequent data transmission is no longer needed while enabling the edge servers to keep up on the current status of the radio environment. On the basis of the created time-spectral model, sharable spectrum resources are dynamically harvested and allocated in terms of geospatial, temporal, and frequency-spectral domains when accepting an application for secondary-spectrum use. A web-based prototype spectrum management system has been implemented using ten servers and dozens of sensors. Measured results show that the proposed approach can reduce data traffic between the sensors and servers by 97%, achieving an average data rate of 10 kilobits per second (kbps). In addition, the basic operation flow of the prototype has been verified through a field experiment conducted at a manufacturing facility and a proof-of-concept experiment of dynamic-spectrum sharing using wireless local-area-network equipment.

Content from these authors
© 2019 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top