IEICE Transactions on Electronics
Online ISSN : 1745-1353
Print ISSN : 0916-8524
Special Section on Recent Advances in Simulation Techniques and Their Applications for Electronics
Research on Stability of MMC-Based Medium Voltage DC Bus on Ships Based on Lyapunov Method
Liang FANGXiaoyan XUTomasz TARASIUK
Author information
JOURNAL FREE ACCESS

2022 Volume E105.C Issue 11 Pages 675-683

Details
Abstract

Modular multilevel converters (MMCs) are an emerging and promising option for medium voltage direct current (MVDC) of all- electric ships. In order to improve the stability of the MVDC transmission system for ships, this paper presents a new control inputs-based Lyapunov strategy based on feedback linearization. Firstly, a set of dynamics equations is proposed based on separating the dynamics of AC-part currents and MMCs circulating currents. The new control inputs can be obtained by the use of feedback linearization theory applied to the dynamic equations. To complete the dynamic parts of the new control inputs from the viewpoint of MVDC system stability, the Lyapunov theory is designed some compensators to demonstrate the effects of the new control inputs on the MMCs state variable errors and its dynamic. In addition, the carrier phase shifted modulation strategy is used because of applying the few number of converter modules to the MVDC system for ships. Moreover, relying on the proposed control strategy, a simulation model is built in MATLAB/SIMULINK software, where simulation results are utilized to verify the validity of proposed control strategy in the MMC-based MVDC system for ships.

Content from these authors
© 2022 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top