2024 Volume E107.C Issue 11 Pages 497-500
Ground penetrating radar (GPR) has the advantage of non-destructively and quickly inspecting internal structures such as voids and buried pipes under roads. However, it is necessary to estimate the internal structures from the GPR images. Recently, recognition and detection methods for GPR images using deep learning have been studied. This paper examines a data augmentation method using a cutout method necessary to estimate GPR images with deep learning accurately. We find that the cutout augmentation exhibits higher detection rates for all objects used in this study than a commonly used horizontal shift augmentation.