IEICE Transactions on Electronics
Online ISSN : 1745-1353
Print ISSN : 0916-8524
Special Section on Electronic Displays
Development and Photoluminescence Properties of Dinuclear Eu(III)-β-Diketonates with a Branched Tetraphosphine Tetraoxide Ligand for Potential Use in LEDs as Red Phosphors
Hiroki IWANAGAFumihiko AIGAShin-ichi SASAOKATakahiro WAZAKI
著者情報
ジャーナル フリー

2024 年 E107.C 巻 2 号 p. 34-41

詳細
抄録

In the field of micro-LED displays consisting of UV or Blue-LED arrays and phosphors, where the chips used are very small, particle size of phosphors must be small to suppress variation in hue for each pixel. Especially, there is a strong demand for a red phosphor with small particle sizes. However, quantum yields of inorganic phosphors decrease as particles size of phosphors get smaller. On the other hand, in the case of organic phosphors and complexes, quantum yields don't decrease when particle size gets smaller because each molecule has a function of absorbing and emitting light. We focus on Eu(III) complexes as candidates of red phosphors for micro-LED displays because their color purities of photoluminescence spectra are high, and have been tried to enhance photoluminescence intensity by coordinating non-ionic ligand, specifically, newly designed phosphine oxide ligands. Non-ionic ligands have generally less influential on properties of complexes compared with ionic ligands, but have a high degree of flexibility in molecular design. We found novel molecular design concept of phosphine oxide ligands to enhance photoluminescence properties of Eu(III) complexes. This time, novel dinuclear Eu(III)-β-diketonates with a branched tetraphosphine tetraoxide ligand, TDPBPO and TDPPPO, were developed. They are designed to have two different phosphine oxide portions; one has aromatic substituents and the other has no aromatic substituent. TDPBPO and TDPPPO ligands have functions of increasing absolute quantum yields of Eu(III)-β-diketonates. Eu(III)-β-diketonates with branched tetraphosphine tetraoxide ligands have sharp red emissions and excellent quantum yields, and are promising candidates for micro LED displays, security media, and sensing for their pure and strong photoluminescence intensity.

著者関連情報
© 2024 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top