IEICE Transactions on Electronics
Online ISSN : 1745-1353
Print ISSN : 0916-8524
Special Section on Heterostructure Microelectronics with TWHM 2007
AlN/GaN Metal Insulator Semiconductor Field Effect Transistor on Sapphire Substrate
Sanghyun SEOKaustav GHOSEGuang Yuan ZHAODimitris PAVLIDIS
Author information
JOURNAL RESTRICTED ACCESS

2008 Volume E91.C Issue 7 Pages 994-1000

Details
Abstract
AlN/GaN Metal Insulator Semiconductor Field Effect Transistors (MISFETs) were designed, simulated and fabricated. DC, S-parameter and power measurements were also performed. Drift-diffusion simulations using DESSIS compared AlN/GaN MISFETs and Al32Ga68N/GaN Heterostructure FETs (HFETs) with the same geometries. The simulation results show the advantages of AlN/GaN MISFETs in terms of higher saturation current, lower gate leakage and higher transconductance than AlGaN/GaN HFETs. First results from fabricated AlN/GaN devices with 1μm gate length and 200μm gate width showed a maximum drain current density of ∼380mA/mm and a peak extrinsic transconductance of 85mS/mm. S-parameter measurements showed that currentgain cutoff frequency (fT) and maximum oscillation frequency (fmax) were 5.85GHz and 10.57GHz, respectively. Power characteristics were measured at 2GHz and showed output power density of 850mW/mm with 23.8% PAE at VDS=15V. To the authors knowledge this is the first report of a systematic study of AlN/GaN MISFETs addressing their physical modeling and experimental high-frequency characteristics including the power performance.
Content from these authors
© 2008 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top