Abstract
High-power T/R switch with GaN HEMT technology is successfully developed, and the design theory is formulated. The proposed switch employs an asymmetric series-shunt/shunt configuration. Because the power handling capability of the proposed switch is mainly dependent of the breakdown voltage of FETs, the proposed circuit can make full use of the characteristics of the GaN HEMT technology. The switch has a high degree of freedom for the FET gate widths, so the low insertion loss can be obtained while keeping high-power performances. To verify this methodology, T/R switch has been fabricated in X-band. The fabricated switch has demonstrated an insertion loss of 1.8dB in Rx-mode, 1.2dB in Tx-mode and power handling capability of 20W in 53% bandwidth.