IEICE Transactions on Electronics
Online ISSN : 1745-1353
Print ISSN : 0916-8524
Low-Power Implementation Techniques for Convolutional Neural Networks using Precise and Active Skipping Methods
Akira KITAYAMAGoichi ONOTadashi KISHIMOTOHiroaki ITONaohiro KOHMU
著者情報
ジャーナル フリー 早期公開

論文ID: 2020CDP0003

詳細
抄録

Reducing power consumption is crucial for edge devices using convolutional neural network (CNN). The zero-skipping approach for CNNs is a processing technique widely known for its relatively low power consumption and high speed. This approach stops multiplication and accumulation (MAC) when the multiplication results of the input data and weight are zero. However, this technique requires large logic circuits with around 5% overhead, and the average rate of MAC stopping is approximately 30%. In this paper, we propose a precise zero-skipping method that uses input data and simple logic circuits to stop multipliers and accumulators precisely. We also propose an active data-skipping method to further reduce power consumption by slightly degrading recognition accuracy. In this method, each multiplier and accumulator are stopped by using small values (e.g., 1, 2) as input. We implemented single shot multibox detector 500 (SSD500) network model on a Xilinx ZU9 and applied our proposed techniques. We verified that operations were stopped at a rate of 49.1%, recognition accuracy was degraded by 0.29%, power consumption was reduced from 9.2 to 4.4 W (-52.3%), and circuit overhead was reduced from 5.1 to 2.7% (-45.9%). The proposed techniques were determined to be effective for lowering the power consumption of CNN-based edge devices such as FPGA.

著者関連情報
© 2020 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top