論文ID: 2022ECP5065
We experimentally evaluated transmission characteristics of 120-GHz-band close-proximity wireless link that employs a split-ring resonator (SRR) millimeter-wave (MMW) absorber integrated on planar slot antennas in 120-GHz-band close-proximity wireless links. We fabricated the SRR MMW absorber made of a 0.28-μm-thick TaN film on a quartz substrate, and integrated it on planar single slot antennas. When the TaN SRRs are not integrated on the planar slot antennas, multiple reflections between the two antennas occur, and a >10-dB fluctuation of S21 at 100-140 GHz is observed. When the TaN SRRs are integrated on the planar antennas, the fluctuation of S21 is suppressed to be 3.5 dB at 100-140 GHz. However, the transmittance of the close proximity wireless link decreases by integrating TaN SRRs on the planar slot antenna because of reflection at the quartz substrate surface. The integration of the radiator that is composed of single SRR with two capacitors just above the slot antenna increased S21 by 3.5 dB at 125 GHz. We conducted a data transmission experiment over a close-proximity wireless link that employs radiator-and-TaN-SRR-integrated slot antennas for Tx and Rx, and succeeded to transmit 10-Gbit/s data over the close-proximity wireless link for the first time.