2018 Volume E101.A Issue 2 Pages 447-459
Block-state realization of state-space digital filters offers reduced implementation complexity relative to canonical state-space filters while filter's internal structure remains accessible. In this paper, we present a quantitative analysis on l2 coefficient sensitivity of block-state digital filters. Based on this, we develop two techniques for minimizing average l2-sensitivity subject to l2-scaling constraints. One of the techniques is based on a Lagrange function and some matrix-theoretic techniques. The other solution method converts the problem at hand into an unconstrained optimization problem which is solved by using an efficient quasi-Newton algorithm where the key gradient evaluation is done in closed-form formulas for fast and accurate execution of quasi-Newton iterations. A case study is presented to demonstrate the validity and effectiveness of the proposed techniques.