IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Regular Section
A RGB-Guided Low-Rank Method for Compressive Hyperspectral Image Reconstruction
Limin CHENJing XUPeter Xiaoping LIUHui YU
Author information
JOURNALS RESTRICTED ACCESS

2018 Volume E101.A Issue 2 Pages 481-487

Details
Abstract

Compressive spectral imaging (CSI) systems capture the 3D spatiospectral data by measuring the 2D compressed focal plane array (FPA) coded projection with the help of reconstruction algorithms exploiting the sparsity of signals. However, the contradiction between the multi-dimension of the scenes and the limited dimension of the sensors has limited improvement of recovery performance. In order to solve the problem, a novel CSI system based on a coded aperture snapshot spectral imager, RGB-CASSI, is proposed, which has two branches, one for CASSI, another for RGB images. In addition, considering that conventional reconstruction algorithms lead to oversmoothing, a RGB-guided low-rank (RGBLR) method for compressive hyperspectral image reconstruction based on compressed sensing and coded aperture spectral imaging system is presented, in which the available additional RGB information is used to guide the reconstruction and a low-rank regularization for compressive sensing and a non-convex surrogate of the rank is also used instead of nuclear norm for seeking a preferable solution. Experiments show that the proposed algorithm performs better in both PSNR and subjective effects compared with other state-of-art methods.

Information related to the author
© 2018 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top