IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Special Section on Design Methodologies for System on a Chip
Extension and Performance/Accuracy Formulation for Optimal GeAr-Based Approximate Adder Designs
Ken HAYAMIZUNozomu TOGAWAMasao YANAGISAWAYouhua SHI
Author information
JOURNAL RESTRICTED ACCESS

2018 Volume E101.A Issue 7 Pages 1014-1024

Details
Abstract

Approximate computing is a promising solution for future energy-efficient designs because it can provide great improvements in performance, area and/or energy consumption over traditional exact-computing designs for non-critical error-tolerant applications. However, the most challenging issue in designing approximate circuits is how to guarantee the pre-specified computation accuracy while achieving energy reduction and performance improvement. To address this problem, this paper starts from the state-of-the-art general approximate adder model (GeAr) and extends it for more possible approximate design candidates by relaxing the design restrictions. And then a maximum-error-distance-based performance/accuracy formulation, which can be used to select the performance/energy-accuracy optimal design from the extended design space, is proposed. Our evaluation results show the effectiveness of the proposed method in terms of area overhead, performance, energy consumption, and computation accuracy.

Content from these authors
© 2018 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top