IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Special Section on Discrete Mathematics and Its Applications
An Efficient Pattern Matching Algorithm for Unordered Term Tree Patterns of Bounded Dimension
Takayoshi SHOUDAITetsuhiro MIYAHARATomoyuki UCHIDASatoshi MATSUMOTOYusuke SUZUKI
Author information
JOURNALS RESTRICTED ACCESS

2018 Volume E101.A Issue 9 Pages 1344-1354

Details
Abstract

A term is a connected acyclic graph (unrooted unordered tree) pattern with structured variables, which are ordered lists of one or more distinct vertices. A variable of a term has a variable label and can be replaced with an arbitrary tree by hyperedge replacement according to the variable label. The dimension of a term is the maximum number of vertices in the variables of it. A term is said to be linear if each variable label in it occurs exactly once. Let T be a tree and t a linear term. In this paper, we study the graph pattern matching problem (GPMP) for T and t, which decides whether or not T is obtained from t by replacing variables in t with some trees. First we show that GPMP for T and t is NP-complete if the dimension of t is greater than or equal to 4. Next we give a polynomial time algorithm for solving GPMP for a tree of bounded degree and a linear term of bounded dimension. Finally we show that GPMP for a tree of arbitrary degree and a linear term of dimension 2 is solvable in polynomial time.

Information related to the author
© 2018 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top