2021 Volume E104.A Issue 4 Pages 723-733
This paper addresses pilot contamination in massive multiple-input multiple-output (MIMO) uplink. Pilot contamination is caused by reuse of identical pilot sequences in adjacent cells. To solve pilot contamination, the base station utilizes differences between the transmission frames of different users, which are detected via joint channel and data estimation. The joint estimation is regarded as a bilinear inference problem in compressed sensing. Expectation propagation (EP) is used to propose an iterative channel and data estimation algorithm. Initial channel estimates are attained via time-shifted pilots without exploiting information about large scale fading. The proposed EP modifies two points in conventional bilinear adaptive vector approximate message-passing (BAd-VAMP). One is that EP utilizes data estimates after soft decision in the channel estimation while BAd-VAMP uses them before soft decision. The other point is that EP can utilize the prior distribution of the channel matrix while BAd-VAMP cannot in principle. Numerical simulations show that EP converges much faster than BAd-VAMP in spatially correlated MIMO, in which approximate message-passing fails to converge toward the same fixed-point as EP and BAd-VAMP.