IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Special Section on Discrete Mathematics and Its Applications
Receiver Selective Opening CCA Secure Public Key Encryption from Various Assumptions
Yi LUKeisuke HARAKeisuke TANAKA
Author information
JOURNAL RESTRICTED ACCESS

2021 Volume E104.A Issue 9 Pages 1206-1218

Details
Abstract

Receiver selective opening (RSO) attack for public key encryption (PKE) captures a situation where one sender sends messages to multiple receivers, an adversary can corrupt a set of receivers and get their messages and secret keys. Security against RSO attack for a PKE scheme ensures confidentiality of other uncorrupted receivers' ciphertexts. Among all of the RSO security notions, simulation-based RSO security against chosen ciphertext attack (SIM-RSO-CCA security) is the strongest notion. In this paper, we explore constructions of SIM-RSO-CCA secure PKE from various computational assumptions. Toward this goal, we show that a SIM-RSO-CCA secure PKE scheme can be constructed based on an IND-CPA secure PKE scheme and a designated-verifier non-interactive zero-knowledge (DV-NIZK) argument satisfying one-time simulation soundness. Moreover, we give the first construction of DV-NIZK argument satisfying one-time simulation soundness. Consequently, through our generic construction, we obtain the first SIM-RSO-CCA secure PKE scheme under the computational Diffie-Hellman (CDH) or learning parity with noise (LPN) assumption.

Content from these authors
© 2021 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top