2021 Volume E104.A Issue 9 Pages 1375-1378
This letter reports on the effectiveness of applying the K-singular value decomposition (SVD) dictionary learning to the electroencephalogram (EEG) compressed sensing framework with outlier detection and independent component analysis. Using the K-SVD dictionary matrix with our design parameter optimization, for example, at compression ratio of four, we improved the normalized mean square error value by 31.4% compared with that of the discrete cosine transform dictionary for CHB-MIT Scalp EEG Database.