IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Regular Section
Concatenated Permutation Codes under Chebyshev Distance
Motohiro KAWASUMIKenta KASAI
Author information
JOURNAL FREE ACCESS

2023 Volume E106.A Issue 3 Pages 616-632

Details
Abstract

Permutation codes are error-correcting codes over symmetric groups. We focus on permutation codes under Chebyshev () distance. A permutation code invented by Kløve et al. is of length n, size 2n-d and, minimum distance d. We denote the code by φn,d. This code is the largest known code of length n and minimum Chebyshev distance d > n/2 so far, to the best of the authors knowledge. They also devised efficient encoding and hard-decision decoding (HDD) algorithms that outperform the bounded distance decoding. In this paper, we derive a tight upper bound of decoding error probability of HDD. By factor graph formalization, we derive an efficient maximum a-posterior probability decoding algorithm for φn,d. We explore concatenating permutation codes of φn,d=0 with binary outer codes for more robust error correction. A naturally induced pseudo distance over binary outer codes successfully characterizes Chebyshev distance of concatenated permutation codes. Using this distance, we upper-bound the minimum Chebyshev distance of concatenated codes. We discover how to concatenate binary linear codes to achieve the upper bound. We derive the distance distribution of concatenated permutation codes with random outer codes. We demonstrate that the sum-product decoding performance of concatenated codes with outer low-density parity-check codes outperforms conventional schemes.

Content from these authors
© 2023 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top