IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Regular Section
Inefficacious Conditions of the Frobenius Primality Test and Grantham's Problem
Naoyuki SHINOHARA
Author information
JOURNAL RESTRICTED ACCESS

2008 Volume E91.A Issue 11 Pages 3325-3334

Details
Abstract
For determining whether an input number is prime, there are two kinds of algorithms, a primality test and a primality proving. A primality test is very efficient but probabilistic, that is, there are certain errors in determining primality. On the other hand, a primality proving always gives a correct answer but it is not so efficient. Grantham proposed a very interesting problem on the Quadratic Frobenius Test (QFT) which is a primality test. If we negatively solve the problem, then we can construct a primality proving more efficient than any other existing primality proving. To solve Grantham's problem, it is important to study when QFT fails. In this paper, as the first step to solve Grantham's problem, we show two conditions on a given odd composite number n and parameters a, b of QFT such that n passes QFT for a, b. Based on these conditions, we made a computational experiment that may suggest the problem will be negatively solved. Moreover, the two conditions give two algorithms computing a pair (a, b) for which a given odd composite number n passes QFT, where n's prime factorization is known.
Content from these authors
© 2008 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top