Abstract
This paper proposes a novel RBF training algorithm based on immune operations for dynamic problem solving. The algorithm takes inspiration from the dynamic nature of natural immune system and locally-tuned structure of RBF neural network. Through immune operations of vaccination and immune response, the RBF network can dynamically adapt to environments according to changes in the training set. Simulation results demonstrate that RBF equalizer based on the proposed algorithm obtains good performance in nonlinear time-varying channels.