IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Regular Section
Structured LDPC Codes to Reduce Pseudo Cycles for Turbo Equalization in Perpendicular Magnetic Recording
Pornchai SUPNITHIWatid PHAKPHISUTWicharn SINGHAUDOM
Author information
JOURNAL RESTRICTED ACCESS

2011 Volume E94.A Issue 6 Pages 1441-1448

Details
Abstract
Low-density parity-check (LDPC) codes are typically designed to avoid the length-4 cycles to ensure acceptable levels of performance. However, the turbo equalization, which relies on an interaction between an inner code such as an LDPC code and a soft-output Viterbi algorithm (SOVA) detector, exhibits a performance degradation due to the pseudo cycles. In this paper, we propose an interleaved modified array code (IMAC) that can reduce the number of pseudo cycles, hence, improving the gains from the iterative processing technique. The modification is made on the existing array-based LDPC codes named modified array codes (MAC) by introducing an additional interleaving matrix to the parity-check matrix. Simulation results on the perpendicular magnetic recording channels (PMRC) demonstrate that the IMAC outperforms both the MAC and the previously proposed random interleave array (RIA) codes for the partial-response targets under consideration. In addition, a subblock-based encoder design is proposed to reduce the encoding complexity of the IMAC and when compared with the RIA code, the IMAC exhibits a lower encoding complexity, and still maintains a comparable level of the decoding complexity.
Content from these authors
© 2011 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top