Abstract
A parameterization of perfect sequences over composition algebras over the real number field is presented. According to the proposed parameterization theorem, a perfect sequence can be represented as a sum of trigonometric functions and points on a unit sphere of the algebra. Because of the non-commutativity of the multiplication, there are two definitions of perfect sequences, but the equivalence of the definitions is easily shown using the theorem. A composition sequence of sequences is introduced. Despite the non-associativity, the proposed theorem reveals that the composition sequence from perfect sequences is perfect.