Abstract
In this letter, an area-efficient architecture for the hardware implementation of the real-time prime factor Fourier transform (PFFT) is presented. In the proposed architecture, a prime length DFT module with the one-point-per-cycle (OPPC) property is implemented by the parallel distributed arithmetic (DA), and a cyclic convolution feature is exploited to simplify the structure of the DA cells. Based on the proposed architecture, a real-time 65-point PFFT processor is designed, and the synthesis results show that it saves over 8% gates compared to the existing real-time 64-point DFT designs.