Abstract
Quantum steganography is to send secret quantum information through a quantum channel, such that an unauthorized user will not be aware of the existence of secret data. The depolarizing channel can hide quantum information by disguising it as channel errors of a quantum error-correcting code. We improve the efficiency of quantum steganography with noisy depolarizing channels, by modifying the twirling procedure and adding quantum teleportation. The proposed scheme not only meets the requirements of quantum steganography but also has higher efficiency.