Abstract
We propose a cooperative compressed spectrum sensing scheme for correlated signals in wideband cognitive radio networks. In order to design a reconstruction algorithm which accurately recover the wideband signals from the compressed samples in low SNR (Signal-to-Noise Ratio) environments, we consider the multiple measurement vector model exploiting a sequence of input signals and propose a cooperative sparse Bayesian learning algorithm which models the temporal correlation of the input signals. Simulation results show that the proposed scheme outperforms existing compressed sensing algorithms for low SNRs.