IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Special Section on VLSI Design and CAD Algorithms
ECC-Based Bit-Write Reduction Code Generation for Non-Volatile Memory
Masashi TAWADAShinji KIMURAMasao YANAGISAWANozomu TOGAWA
Author information
JOURNAL RESTRICTED ACCESS

2015 Volume E98.A Issue 12 Pages 2494-2504

Details
Abstract
Non-volatile memory has many advantages such as high density and low leakage power but it consumes larger writing energy than SRAM. It is quite necessary to reduce writing energy in non-volatile memory design. In this paper, we propose write-reduction codes based on error correcting codes and reduce writing energy in non-volatile memory by decreasing the number of writing bits. When a data is written into a memory cell, we do not write it directly but encode it into a codeword. In our write-reduction codes, every data corresponds to an information vector in an error-correcting code and an information vector corresponds not to a single codeword but a set of write-reduction codewords. Given a writing data and current memory bits, we can deterministically select a particular write-reduction codeword corresponding to the data to be written, where the maximum number of flipped bits are theoretically minimized. Then the number of writing bits into memory cells will also be minimized. Experimental results demonstrate that we have achieved writing-bits reduction by an average of 51% and energy reduction by an average of 33% compared to non-encoded memory.
Content from these authors
© 2015 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top