Abstract
Let r be an odd prime, such that r≥5 and r≠p, m be the order of r modulo p. Then, there exists a 2pth root of unity in the extension field Frm. Let G(x) be the generating polynomial of the considered quaternary sequences over Fq[x] with q=rm. By explicitly computing the number of zeros of the generating polynomial G(x) over Frm, we can determine the degree of the minimal polynomial, of the quaternary sequences which in turn represents the linear complexity. In this paper, we show that the minimal value of the linear complexity is equal to $ \frac{1}{2}(3p-1) $ which is more than p, the half of the period 2p. According to Berlekamp-Massey algorithm, these sequences viewed as enough good for the use in cryptography.