Abstract
In this letter, a novel collaborative representation graph based on the local and global consistency label propagation method, denoted as CRLGC, is proposed. The collaborative representation graph is used to reduce the cost time in obtaining the graph which evaluates the similarity of samples. Considering the lacking of labeled samples in real applications, a semi-supervised label propagation method is utilized to transmit the labels from the labeled samples to the unlabeled samples. Experimental results on three image data sets have demonstrated that the proposed method provides the best accuracies in most times when compared with other traditional graph-based semi-supervised classification methods.