IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Special Section on VLSI Design and CAD Algorithms
Hardware-Trojans Rank: Quantitative Evaluation of Security Threats at Gate-Level Netlists by Pattern Matching
Masaru OYANoritaka YAMASHITAToshihiko OKAMURAYukiyasu TSUNOOMasao YANAGISAWANozomu TOGAWA
Author information
JOURNAL RESTRICTED ACCESS

2016 Volume E99.A Issue 12 Pages 2335-2347

Details
Abstract

Since digital ICs are often designed and fabricated by third parties at any phases today, we must eliminate risks that malicious attackers may implement Hardware Trojans (HTs) on them. In particular, they can easily insert HTs during design phase. This paper proposes an HT rank which is a new quantitative analysis criterion against HTs at gate-level netlists. We have carefully analyzed all the gate-level netlists in Trust-HUB benchmark suite and found out several Trojan net features in them. Then we design the three types of Trojan points: feature point, count point, and location point. By assigning these points to every net and summing up them, we have the maximum Trojan point in a gate-level netlist. This point gives our HT rank. The HT rank can be calculated just by net features and we do not perform any logic simulation nor random test. When all the gate-level netlists in Trust-HUB, ISCAS85, ISCAS89 and ITC99 benchmark suites as well as several OpenCores designs, HT-free and HT-inserted AES netlists are ranked by our HT rank, we can completely distinguish HT-inserted ones (which HT rank is ten or more) from HT-free ones (which HT rank is nine or less). The HT rank is the world-first quantitative criterion which distinguishes HT-inserted netlists from HT-free ones in all the gate-level netlists in Trust-HUB, ISCAS85, ISCAS89, and ITC99.

Content from these authors
© 2016 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top