IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508

This article has now been updated. Please use the final version.

Unsupervised Deep Embedded Hashing for Large-scale Image Retrieval
Huanmin WANG
Author information
JOURNAL RESTRICTED ACCESS Advance online publication

Article ID: 2020EAL2056

Details
Abstract

Hashing methods have proven to be effective algorithm for image retrieval. However, learning discriminative hash codes is challenging for unsupervised models. In this paper, we propose a novel distinguishable image retrieval framework, named Unsupervised Deep Embedded Hashing (UDEH), to recursively learn discriminative clustering through soft clustering models and generate highly similar binary codes. We reduce the data dimension by auto-encoder and apply binary constraint loss to reduce quantization error. UDEH can be jointly optimized by standard stochastic gradient descent (SGD) in the embedd layer. We conducted a comprehensive experiment on two popular datasets.

Content from these authors
© 2020 The Institute of Electronics, Information and Communication Engineers
feedback
Top