IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508

This article has now been updated. Please use the final version.

Variable Ordering in Binary Decision Diagram using Spider Monkey Optimization for node and path length optimization
Mohammed BALAL SIDDIQUIMirza TARIQ BEGSyed NASEEM AHMAD
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: 2021EAP1108

Details
Abstract

Binary Decision Diagrams (BDDs) are an important data structure for the design of digital circuits using VLSI CAD tools. The ordering of variables affects the total number of nodes and path length in the BDDs. Finding a good variable ordering is an optimization problem and previously many optimization approaches have been implemented for BDDs in a number of research works. In this paper, an optimization approach based on Spider Monkey Optimization (SMO) algorithm is proposed for the BDD variable ordering problem targeting number of nodes and longest path length. SMO is a well-known swarm intelligence-based optimization approach based on spider monkeys foraging behavior. The proposed work has been compared with other latest BDD reordering approaches using Particle Swarm Optimization (PSO) algorithm. The results obtained show significant improvement over the Particle Swarm Optimization method. The proposed SMO-based method is applied to different benchmark digital circuits having different levels of complexities. The node count and longest path length for the maximum number of tested circuits are found to be better in SMO than PSO.

Content from these authors
© 2023 The Institute of Electronics, Information and Communication Engineers
feedback
Top