IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508

This article has now been updated. Please use the final version.

Communication-efficient Federated Indoor Localization with Layerwise Swapping Training-Fed Avg
Jinjie LIANGZhenyu LIUZhiheng ZHOUYan XU
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: 2022EAP1004

Details
Abstract

Federated learning is a promising strategy for indoor localization that can reduce the labor cost of constructing a fingerprint dataset in a distributed training manner without privacy disclosure. However, the traffic generated during the whole training process of federated learning is a burden on the up-and-down link, which leads to huge energy consumption for mobile devices. Moreover, the non-independent and identically distributed (Non-IID) problem impairs the global localization performance during the federated learning. This paper proposes a communication-efficient FedAvg method for federated indoor localization which is improved by the layerwise asynchronous aggregation strategy and layerwise swapping training strategy. Energy efficiency can be improved by performing asynchronous aggregation between the model layers to reduce the traffic cost in the training process. Moreover, the impact of the Non-IID problem on the localization performance can be mitigated by performing swapping training on the deep layers. Extensive experimental results show that the proposed methods reduce communication traffic and improve energy efficiency significantly while mitigating the impact of the Non-IID problem on the precision of localization.

Content from these authors
© 2022 The Institute of Electronics, Information and Communication Engineers
feedback
Top