IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508

This article has now been updated. Please use the final version.

Detection of False Data Injection Attacks in Distributed State Estimation of Power Networks
Sho OBATAKoichi KOBAYASHIYuh YAMASHITA
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: 2022MAP0010

Details
Abstract

In a power network, it is important to detect a cyber attack. In this paper, we propose a method for detecting false data injection (FDI) attacks in distributed state estimation. An FDI attack is well known as one of the typical cyber attacks in a power network. As a method of FDI attack detection, we consider calculating the residual (i.e., the difference between the observed and estimated values). In the proposed detection method, the tentative residual (estimated error) in ADMM (Alternating Direction Method of Multipliers), which is one of the powerful methods in distributed optimization, is applied. First, the effect of an FDI attack is analyzed. Next, based on the analysis result, a detection parameter is introduced based on the residual. A detection method using this parameter is then proposed. Finally, the proposed method is demonstrated through a numerical example on the IEEE 14-bus system.

Content from these authors
© 2022 The Institute of Electronics, Information and Communication Engineers
feedback
Top