IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Regular Section
Critical Nodes Identification of Power Grids Based on Network Efficiency
WenJie KANGPeiDong ZHUJieXin ZHANGJunYang ZHANG
Author information
JOURNAL FREE ACCESS

2018 Volume E101.D Issue 11 Pages 2762-2772

Details
Abstract

Critical nodes identification is of great significance in protecting power grids. Network efficiency can be used as an evaluation index to identify the critical nodes and is an indicator to quantify how efficiently a network exchanges information and transmits energy. Since power grid is a heterogeneous network and can be decomposed into small functionally-independent grids, the concept of the Giant Component does not apply to power grids. In this paper, we first model the power grid as the directed graph and define the Giant Efficiency sub-Graph (GEsG). The GEsG is the functionally-independent unit of the network where electric energy can be transmitted from a generation node (i.e., power plants) to some demand nodes (i.e., transmission stations and distribution stations) via the shortest path. Secondly, we propose an algorithm to evaluate the importance of nodes by calculating their critical degree, results of which can be used to identify critical nodes in heterogeneous networks. Thirdly, we define node efficiency loss to verify the accuracy of critical nodes identification (CNI) algorithm and compare the results that GEsG and Giant Component are separately used as assessment criteria for computing the node efficiency loss. Experiments prove the accuracy and efficiency of our CNI algorithm and show that the GEsG can better reflect heterogeneous characteristics and power transmission of power grids than the Giant Component. Our investigation leads to a counterintuitive finding that the most important critical nodes may not be the generation nodes but some demand nodes.

Content from these authors
© 2018 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top