IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Regular Section
Learning Dynamic Systems Using Gaussian Process Regression with Analytic Ordinary Differential Equations as Prior Information
Shengbing TANGKenji FUJIMOTOIchiro MARUTA
Author information
JOURNAL FREE ACCESS

2021 Volume E104.D Issue 9 Pages 1440-1449

Details
Abstract

Recently the data-driven learning of dynamic systems has become a promising approach because no physical knowledge is needed. Pure machine learning approaches such as Gaussian process regression (GPR) learns a dynamic model from data, with all physical knowledge about the system discarded. This goes from one extreme, namely methods based on optimizing parametric physical models derived from physical laws, to the other. GPR has high flexibility and is able to model any dynamics as long as they are locally smooth, but can not generalize well to unexplored areas with little or no training data. The analytic physical model derived under assumptions is an abstract approximation of the true system, but has global generalization ability. Hence the optimal learning strategy is to combine GPR with the analytic physical model. This paper proposes a method to learn dynamic systems using GPR with analytic ordinary differential equations (ODEs) as prior information. The one-time-step integration of analytic ODEs is used as the mean function of the Gaussian process prior. The total parameters to be trained include physical parameters of analytic ODEs and parameters of GPR. A novel method is proposed to simultaneously learn all parameters, which is realized by the fully Bayesian GPR and more promising to learn an optimal model. The standard Gaussian process regression, the ODE method and the existing method in the literature are chosen as baselines to verify the benefit of the proposed method. The predictive performance is evaluated by both one-time-step prediction and long-term prediction. By simulation of the cart-pole system, it is demonstrated that the proposed method has better predictive performances.

Content from these authors
© 2021 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top