IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Special Section on Deep Learning Technologies: Architecture, Optimization, Techniques, and Applications
Computer Vision-Based Tracking of Workers in Construction Sites Based on MDNet
Wen LIUYixiao SHAOShihong ZHAIZhao YANGPeishuai CHEN
Author information
JOURNAL FREE ACCESS

2023 Volume E106.D Issue 5 Pages 653-661

Details
Abstract

Automatic continuous tracking of objects involved in a construction project is required for such tasks as productivity assessment, unsafe behavior recognition, and progress monitoring. Many computer-vision-based tracking approaches have been investigated and successfully tested on construction sites; however, their practical applications are hindered by the tracking accuracy limited by the dynamic, complex nature of construction sites (i.e. clutter with background, occlusion, varying scale and pose). To achieve better tracking performance, a novel deep-learning-based tracking approach called the Multi-Domain Convolutional Neural Networks (MD-CNN) is proposed and investigated. The proposed approach consists of two key stages: 1) multi-domain representation of learning; and 2) online visual tracking. To evaluate the effectiveness and feasibility of this approach, it is applied to a metro project in Wuhan China, and the results demonstrate good tracking performance in construction scenarios with complex background. The average distance error and F-measure for the MDNet are 7.64 pixels and 67, respectively. The results demonstrate that the proposed approach can be used by site managers to monitor and track workers for hazard prevention in construction sites.

Content from these authors
© 2023 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top