2023 Volume E106.D Issue 9 Pages 1490-1494
Different types of malicious attacks have been increasing simultaneously and have become a serious issue for cybersecurity. Most attacks leverage domain URLs as an attack communications medium and compromise users into a victim of phishing or spam. We take advantage of machine learning methods to detect the maliciousness of a domain automatically using three features: DNS-based, lexical, and semantic features. The proposed approach exhibits high performance even with a small training dataset. The experimental results demonstrate that the proposed scheme achieves an approximate accuracy of 0.927 when using a random forest classifier.