IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Special Section on Machine Vision and its Applications
A New Region-Based Active Contour Model with Skewness Wavelet Energy for Segmentation of SAR Images
Gholamreza AKBARIZADEHGholam Ali REZAI-RADShahriar BARADARAN SHOKOUHI
Author information
JOURNAL FREE ACCESS

2010 Volume E93.D Issue 7 Pages 1690-1699

Details
Abstract
A new method of segmentation for Synthetic Aperture Radar (SAR) images using the skewness wavelet energy has been presented. The skewness is the third order cumulant which measures the local texture along the region-based active contour. Nonlinearity in intensity inhomogeneities often occur in SAR images due to the speckle noise. In this paper we propose a region-based active contour model that is able to use the intensity information in local regions and to cope with the speckle noise and nonlinear intensity inhomogeneity of SAR images. We use a wavelet coefficients energy distribution to analyze the SAR image texture in each sub-band. A fitting energy called skewness wavelet energy is defined in terms of a contour and a functional so that, the regions and their interfaces will be modeled by level set functions. A functional relationship has been calculated on these level sets in terms of the third order cumulant, from which an energy minimization is derived. Minimizing the calculated functions derives the optimal segmentation based on the texture definitions. The results of the implemented algorithm on the test images from the Radarsat SAR images of agricultural and urban regions show a desirable performance of the proposed method.
Content from these authors
© 2010 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top