日本機械学会論文集
Online ISSN : 2187-9761
ISSN-L : 2187-9761
機械力学,計測,自動制御,ロボティクス,メカトロニクス
脚機構にセミアクティブダンパを用いた着陸船の転倒防止制御
前田 孝雄大槻 真嗣橋本 樹明
著者情報
ジャーナル フリー

2014 年 80 巻 816 号 p. DR0235

詳細
抄録

This paper describes the attitude control method for overturning prevention for a lunar planetary lander which uses a semi-active damper on the landing leg. In order to achieve safe landing on uneven terrain especially a sloped ground, a novel landing gear system is required. The landing leg with variable damping is one of the solutions for touchdown without overturning. Conventional landing gear for lunar and planetary lander has a fixed shock attenuation parameter and it is not used proactively for attitude control of the lander in the touchdown sequence. By controlling the damping coefficient of the each landing leg, it becomes possible to suppress the disturbance on the attitude of the lander, and it prevents overturning. First, the strategies for the overturn prevention for the lander by changing damping coefficient of landing legs are shown and the control rules based on the lander and landing leg state values are proposed. In the second place, the mathematical model of lander based on the differential algebraic equation in vertical two-dimensional plane is presented. Besides footpad-ground contact model is also described. Finally, touchdown simulations on a sloped terrain with the proposed landing gear control method are shown. Numerical simulations show that the proposed landing gear system works well during the touchdown on a sloped terrain.

著者関連情報
© 2014 一般社団法人日本機械学会
前の記事 次の記事
feedback
Top