日本機械学会論文集
Online ISSN : 2187-9761
ISSN-L : 2187-9761
材料力学,機械材料,材料加工
延性損傷モデルを用いた予ひずみ材の延性き裂進展抵抗の予測手法の提案
大畑 充庄司 博人清水 万真谷川 博康加藤 太一朗野澤 貴史
著者情報
ジャーナル オープンアクセス

2023 年 89 巻 926 号 p. 23-00168

詳細
抄録

This study aims to develop a numerical simulation-based method for predicting ductile crack growth resistance curve (R-curve) for pre-strained components for rational assessment of ductile crack growth controlling fracture for pre-strained structural component with any plastic constraint. Experiments on R-curve of 3-point bend specimen with a shallow crack for steel pre-strained by 6% over uniform elongation provides that the pre-strain does not significantly reduce ductile crack initiation and growth resistance, even though the pre-strain induces disappearance of uniform elongation and work hardening together with drastic reduction in elongation. Observations of damage evolution in terms of micro-void formation indicate that ductile crack growth behaviors in both virgin and pre-strained steels are based on a micro-void nucleation-controlled ductile fracture mechanism. These experimental results demonstrate that the ductile damage model that we have already proposed for predicting R-curve for virgin steel that exhibits micro-void nucleation-controlled ductile fracture behaviors can be applicable for these virgin and pre-strained steels used. Thus, based on the previously proposed ductile damage model, a simulation-based method to predict the R-curve of pre-strained specimens only from the properties of virgin steel is proposed taking material degradation (change in strength and damage properties) due to pre-strain into account. The applicability of the proposed method is verified by showing the predicted R-curve for pre-strained steel are in good agreement with experimental results.

著者関連情報
© 2023 一般社団法人日本機械学会

この記事はクリエイティブ・コモンズ [表示 - 非営利 - 改変禁止 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
前の記事 次の記事
feedback
Top