日本機械学会論文集
Online ISSN : 2187-9761
ISSN-L : 2187-9761
深層学習を援用した免震・制振装置の検査手法に関する提案(正常な荷重−変位関係の画像データに基づく異常検出)
深沢 剛司藤田 聡
著者情報
ジャーナル オープンアクセス 早期公開

論文ID: 25-00014

詳細
抄録

This paper proposes a novel inspection system for seismic isolation and vibration control devices using unsupervised deep learning to enhance evaluation reliability and objectivity. Conventional force and stiffness assessments through loading tests require human inspectors, creating potential subjective bias and necessitating impartial third-party evaluation. The proposed deep learning system minimizes human intervention, significantly improving test result consistency while eliminating operator bias. The unsupervised learning approach enables the model to learn exclusively from normal operational data, facilitating detection of anomalies in previously unseen patterns with high sensitivity. This paper presents a comprehensive framework encompassing data generation, preprocessing, and model inference. Experimental validation using oil dampers and laminated rubber bearings, representative components in seismic isolation technology, demonstrates the method's effectiveness with approximately 98% classification accuracy for oil dampers and 100% for rubber bearings in distinguishing normal from anomaly conditions. These results confirm the system's viability for large-scale manufacturing deployment. Furthermore, anomaly visualization capabilities provide valuable insights for manufacturers and regulatory bodies, reinforcing the importance of objective and transparent evaluation. This inspection system establishes a robust foundation for quality control in seismic isolation and vibration control technologies, with significant potential for broader adoption toward ensuring safer and more reliable infrastructure.

著者関連情報
© 2025 一般社団法人日本機械学会

この記事はクリエイティブ・コモンズ [表示 - 非営利 - 改変禁止 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
前の記事 次の記事
feedback
Top